Теория игр: математики построили модель сотрудничества "заключенных"
- Автор
- Дата публикации
- Автор
Ученые описали сильные отклонения участников от рационального поведения в «дилемме заключенного» — известной стратегической игре из теории игр.
Международной группе исследователей из МФТИ, Сколтеха, ТГУ и Орегонского университета удалось теоретически описать сильные отклонения участников от рационального поведения в «дилемме заключенного» — известной стратегической игре из теории игр. После знакомства и недолгого общения участников лабораторных экспериментов уровень их кооперации повысился со стандартных 20% до более чем 50%.
[news_post id='3435796' name='' img='' align='left']
Результат был опубликован в журнале PLоS ONE.
Теория игр — это наука о принятии решений, математический метод изучения оптимальных стратегий в играх, где игроки обладают разными интересами и могут действовать нерационально. Ее методики активно используются в экономике, политологии, психологии и многих других социальных сферах жизни.
В исследовании применялись методы экспериментальной экономики. Она позволяет выявлять модели поведения людей в определенных социально-экономических ситуациях, понимать влияние одних событий и факторов на другие, прослеживать логику принятия решения в различных экономических областях.
[news_post id='3917907' name='' img='' align='right']
Чтобы проанализировать социальные характеристики поведения людей во время игрового взаимодействия в группах от 4 до 12 человек, ученые в течение трех лет проводили эксперименты в Лаборатории экспериментальной экономики МФТИ совместно со Сколтехом. Исследователи изучали индивидуальные процессы принятия решения при различных условиях, а также влияние социальных факторов, психологии и физиологии. В опубликованной работе исследователи представили результаты восьми экспериментов, в каждом из которых принимало участие 12 игроков. Всего было задействовано 96 человек: 59 мужчин и 37 женщин.
Студенты МФТИ, которые принимали участие в экспериментах, изначально были незнакомы и вначале действовали по стандартной схеме выбора стратегий в игре «дилемма заключенного».
[news_post id='3879816' name='' img='' align='left']
Ее суть заключалась в том, что участникам предлагалось анонимно взаимодействовать друг с другом посредством двух действий: кооперировать (К) или предавать (П). По правилам игры, если один игрок выбирает «К», а другой «П», предатель получает 10 очков, а кооператор – 0 очков. Если оба игрока выбирают «К», каждому достается по 5 очков, если «П» – каждый получает всего по 1 очку. Зная правила, можно понять, что кооперироваться выгодно, хотя с точки зрения математики рациональнее выбирать предательство. Именно эта ситуация является в данной игре равновесием по Нэшу, то есть математически верной стратегией, названной именем автора — знаменитого нобелевского лауреата Джона Форбса Нэша.
[news_post id='3923003' name='' img='' align='right']
Отклонение от равновесия Нэша не приводит к увеличению выигрыша, если другие участники игры своих стратегий не меняют. В начале игры уровень кооперации в группах составил в среднем 21%, то есть участники скорее выбирали рациональную стратегию предательства. Но после знакомства и «социализации» средний уровень кооперации увеличился до 53% и выше, то есть в среднем участники скорее отклонялись от равновесия Нэша, чем придерживались рациональной стратегии.
Расчеты ученых показали, что поведение участников до социализации может быть описано с помощью модели Quantal Response Equilibrium (QRE). Концепция QRE возникла на стыке теории игр и экспериментальной экономики для объяснения наблюдаемого поведения участников лабораторных экспериментов в тех случаях, когда оно отличается от равновесия Нэша.
[news_post id='3910969' name='' img='' align='left']
Эта модель хорошо соответствовала практике для порядка 20% процентов отклонений. Но оказалось, что стандартный подход QRE не может применяться для описания поведения участников после социализации, потому что отклонений участников от равновесия Нэша в этом случае становится слишком много – больше половины, то есть их уже нельзя считать случайными ошибками, как это делается в традиционной модели.Поэтому математики решили применить марковские стратегии для теоретического обоснования полученных экспериментальных данных. Ученые построили и проанализировали модель повторяющейся игры «дилеммы заключенного». Каждый участник мог реагировать только на то, какую стратегию (кооперировать или предавать) реализовал его случайный анонимный партнер ход назад. Анализируя эту информацию, он делал выбор стратегии на текущем ходе. Такой подход, названный в честь автора – русского математика Андрея Маркова, в итоге позволил получить игру в нормальной форме: то есть состоящей из множества игроков, множества чистых стратегий и множества действий каждого игрока. Также удалось показать, что выигрыши нелинейно зависят от вероятностей поведения игроков. Ученые нашли в явном виде семейство внутренних симметричных равновесий Нэша: набор оптимальных стратегий, одинаковый для обоих партнеров и зависящий только от вероятностей поведения игроков.
Таким образом, ученым удалось построить теоретическую модель, позволяющую описывать преобладание выбора кооперативных стратегий в повторяющейся игре «дилемма заключенного» и соответствующую экспериментальным данным.
По словам ученых, остаются открытыми вопросы теоретического обоснования результатов таких игр, как «игра на доверие» и «игра-ультиматум», экспериментальные данные которых не соответствуют известным теоретическим игровым моделям в рамках исследования влияния социального взаимодействия.