Нейросеть решает задачу трех тел намного быстрее, чем человек

Автор
Нейросеть решает задачу трех тел намного быстрее, чем человек

Нейронная сеть смогла решить задачу трех тел в 100 млн. раз быстрее человека.

Задача трех тел — одна из самых известных в области астрономии, которая предполагает вычисление движения трех небесных объектов под влиянием их взаимных гравитационных притяжений. Для этой задачи до сих пор нет общего решения, поэтому в каждом случае, когда она применяется, вычисления нужно производить отдельно. Теперь эту функцию на себя может взять нейронная сеть.

Команда использовала 10 тыс. примеров для обучения нейросети и 100 для их проверки. Теперь они тестируют сеть с 5 тыс. совершенно новыми ситуациями и сравнивают их результаты с вычислениями человека.

Результаты показали, что нейронная сеть точно предсказывает потенциальное движение трех тел и, в частности, правильно имитирует расхождения между близлежащими траекториями. "Мы показали, что глубокие искусственные нейронные сети дают быстрые и точные решения сложной задачи за фиксированный промежуток времени", — отметили исследователи.

Более того, они проверяют показания нейросети, отмечая, насколько хорошо он экономит энергию во время работы. С помощью нескольких корректировок прогнозы сети соответствуют условиям энергосбережения с погрешностью всего в 5-10 раз.

Так намного быстрее: ИИ научился быстро определять лесные пожары

У этого результата есть значительный потенциал, добавили ученые. В частности, нейронная сеть может помочь решить проблемы трех тел в ситуациях, которые становятся вычислительно невыполнимыми для человека.

Таким образом, нейронные сети должны позволить моделировать движение небесных тел внутри галактических ядер и шаровых скоплений звезд намного точнее, чем когда-либо ранее.